对电子结构进行微调以实现特定所需的特性是光学设备设计中的关键策略之一。尤其是,异质结构与不同材料合金的组合为大型设计空间打开了。例如,量子井(QW),量子点(QD)或超级晶格(SL)结构由纯材料制成或其组成合金用于量身定制能量水平,带隙或过渡能量和光学强度,以及用于控制电子传输,发射或AB-Sorptigning Paspera [1-6]。实际上,在许多情况下,单个层由合金材料组成,例如Ingan/Gan LED中的量子井[7,8],它可以通过调整QW厚度和合金组成来调整不同的设备性能参数。这种频带工程方法已被广泛应用于发光设备(LED)[9,10],可见的和未验证的探测器[11-13],以及更复杂的结构(如量子级联激光器[14,15])。此外,不仅在具有良好的生长技术(例如Si / ge,IIII-V,III-硝化物和II-VI半导体)的材料系统中使用,而且还应用于诸如混合钙胶质等其他系统[16]。显然,除了在设备尺度上的QW,QD或SL结构的细节外,合金材料中的显微镜,原子结构对光电设备的特性有重要影响。此外,由于原子间扩散,混合和隔离,可以在异质间隙处发生合金状构型[17,18]。由于合金在原子量表上表现出固有的随机疾病,因此局部电子和光学培养基在空间上也有所不同,其程度取决于均匀程度和特定材料的类型。因此,即使在理想的情况下,混乱也可以在设备的宏观行为中表现出来
主要关键词